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Abstract  

Satellite-based hyperspectral imaging became a reality in November 2000 with the 
successful launch and operation of the Hyperion system on board the EO-1 platform. The product 
is distributed by USGS, and the level one product, which is only radiometrically corrected, is 
used.Hyperspectral remote sensing has the potential to provide the detailed physico-chemistry 
(mineralogy, chemistry, morphology) of the earth’s surface. The present study attempts to test the 
abilities of Hyperion data for mineral abundance mapping in the study area comprising part of 
Udaipur Dist,Rajasthan. Pre-processing requirements to prepare high quality data for analysis 
purposes then performed on data. In this study, FLAASH software was used to convert radiance 
into corresponding reflectance. Due to the low reflectance level in some bands, the original 196 
bands were reduced to 144 bands after the atmospheric correction. A minimum noise fraction (MNF) 
transformation was used to reduce the dimensionality of the hyperspectral data by segregating the 
noise in the data. The Pixel Purity Index (PPI) was computed by continually projecting n-
dimensional scatterplots onto a random vector.N-Dimensional visualization techniques were used to 
select endmembers within a scene.Four endmembers were collected from the Udaipur study area and 
they are Grossularite, Pyrite, Calcite and Andradite. Endmembers identified by PPI and N-dimensional 
visualizer are compared spectrally to the United States Geological Survey (USGS) mineral 
spectral library. Mixture Tune Matched Filtering and Spectral Angle Mapper (SAM) were applied to 
estimate abundances of each endmember to produce final map. Mixture Tune Matched Filtering 
gave good results in mapping the endmembers while SAM has given intermixing of endmembers in study 
area. In conclusion, it can be said that the low signal to noise ratio of Hyperion and presence of smile 
effect in the image and the use of laboratory spectra of these minerals from the standard spectral 
libraries as the reference affected the classification results and their accuracies.    



1. Introduction  

   The hyperspectral sensors represent one of the most important technological trends in remote 
sensing which combines imaging and spectroscopy in a single system, includes datasets 
composed of  large (about 100 to 200) spectral bands of relatively narrow bandwidths(5-20 nm). 
Hyperspectral remote sensing , measuring hundreds of spectral bands from aircraft and satellite 
platforms, provides unique spatial/spectral datasets for analysis of surface mineralogy (Goetz et 
al., 1985; Kruse et al.,2003). These data allow mapping of key iron mineralogy such as hematite, 
goethite, and jarosite as well as alteration minerals such as kaolinite, dickite, alunite, and sericite 
(Clark et al., 1990). Their use for geologic applications is well established (Goetz et al., 1985; 
Kruse et al., 1999,2003; Rowan and Mars, 2003). 
       As part of the US New Millennium Program (faster, cheaper, better), the launch of the EO-1 
satellite platform in November 2000 introduced hyperspectral sensing of the Earth from space 
through its Hyperion system (Pearlman,et al., 1999 and Liao et al., 2000) albeit as a scientific 
experiment. The EO-1 has a sun-synchronous orbit with an altitude of 705 km and a 10:01 AM 
descending node The orbit inclination is 98.2 degree. Equatorial crossing time is one minute behind 
Landsat-7.The telescope provides for two separate grating image spectrometers  to improve 
signal-to-noise ratio(SNR).The Hyperion VNIR sensor has 70 bands(355.589-851.92nm), and 
the SWIR has 172 bands(1057.36-2577.07nm) providing 242 potential bands.Different mineral 
have a unique reflectance and absorption pattern across different wave-length. So, minerals can 
be uniquely identified. Two main causes for the absorption features are : i) Electric Processes 
and ii) Vibrational Processes. Hyperion uses two atmospheric windows, the VNIR & SWIR 
regions for mapping surface mineralogy because these wave-lengths are sensitive to a wide range 
of diagnostic EMR-material interactions.  
     The primary aims and objectives of the present work is to understand EO-1 Hyperion data 
processing and spectral analysis for mineral abundance mapping in part of Udaipur 
dist,Rajasthan and to find greater application of hyperspectral remote sensing techniques in 
mineral exploration. This study attempts to map the various minerals present in the exposed rock 
surface in the study area.   

2. Study Area 

     The study area is a part of Udaipur District, Rajasthan, India. The area is located southwest of 
Udaipur City covering a part of Hindustan Zinc Limited – Zawar Mines area. The extent of the 
study area is from 73° 33’ 25” E to 73° 42’ 53” E and 24° 09’ 34” N to 24° 31’ 40” N covering  
303.43 sq km. Udaipur District is one of the 33 districts of Rajasthan state in western India. 
Udaipur District is bounded on the northwest by the Aravalli Range, across which lie the districts 
of Sirohi and Pali.The Udaipur city of Rajasthan comes under the semi-arid terrain with 
negligible amount of vegetation.Geologically the region comes under the Pre-Cambrian era of 
the geological time scale.         



               

Figure 1- Study area (Udaipur), Hyperion (FCC 47 28 15)  

2.1 Geological setting 

The geological setting of Udaipur area is not only unique in the state but also shows wide 
complexity. It is considered as one of the “type area” of the Aravali Super group of rock. The 
study area broadly has two main stratigraphic units i.e. rocks of Aravali Supergroup and pre-
Aravali Formations. Aravali Supergroup of rocks around Udaipur city shows a high degree of 
structural complexity and polyphase deformation history. However at some places (near 
Fatehsagar) the graywacke and phyllite rocks are not metamorphosed or deformed and display 
some typical sedimentary characters like ripple marks, mud cracks, rain prints etc.    
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Figure 2-Geological map of Udaipur study area Modified after S.Sinha-Roy et. al 

Banded Gneissic Complex 

            The Banded Gneissic Complex (BGC) in Rajasthan can be divided into three major rock 
groups, i.e. Mangalwar complex, Sandmata Complex and the Hindoli Group. The BGC in 
Udaipur and its surroundings can be grouped under the Mangalwar and the Sandmata Complex. 
The mangalwar complex is a heterogeneous assemblage of amphibolite-facies metamorphites 
comprising of mignmatites, composite gneisses, feldsparthic mica schist, sillimanite-kyanite-
mica-schist, hornblende schist, granite gneiss and amphibolite along with minor carbonates 
constitute the Mangalwar complex (Gupta et.al. 1981). The Sandmata Complex are the high-
grade metamorphites, comprising of migmatites, composite gneisses, biotite-schist, garnet-
sillimanite-staurolite-biotite schist, dolomitic marble, hornblende schist with associated granite, 
are included in the Sandmata complex. The boundary between the Sandmata Complex and the 
Mangalwar Complex is marked by isograd roughly along the Delwara Lineament. Sinha-Roy et 
al. (1992) suggested that the Sandmata Complex constitutes only the high pressure granulite 
facies rocks having tectonic contact with the encompassing Mangalwar complex rocks.  

The Aravalli Supergroup can be divided into two principal facies sequences. One is the 
Delwara group which is volcanic dominated and the volcanics free Debari Group.The Delwara 
group occupies the lowermost position in the Aravalli stratigraphy. It comprises of mafic 
volcanics, clean-washed quartzite, quartz pebble conglomerate (QPC), minor carbonates and 
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BIF. The lithoassemblage comprising coarse clastics, carbonates and pelites constitute the 
Middle Aravalli sequence and is designated as the Debari Group (Sinha-Roy et al,1993b). The 
carbonate free and pelite dominant sequence with arenite bands constitute a large part of the 
Aravalli sequence and it is named as the Jharol Group (Gupta et al, 1981). It is interpreted as 
distal turbidities or flysch of the Aravalli deepsea sequence. The rock sequence comprising of 
coarse pelitic schist and quartzite with phosphoritic dolomite that occur in a roughly polygonal 
area in southern Rajasthan is referred to as Lunavada Group. Ultramafic rocks represented by 
serpentinite, talc-tremolite schist, antigorite-tremolite schist and monomineralic chloro-schist 
occur along two regional lineaments, i.e. Rakhabdev Lineament in the east and Kaliguman 
Lineament in the west (Bakliwal and Ramaswamy,1987). Although these bodies occur as lenses 
and linear bands of variable dimensions, their disposition marks a linearity. These Ultramafic 
rocks were variably described as ‘Magnesian rocks’ (Middlemiss, 1921) and as ‘talc-serpentine-
chlorite rock’(Ghosh,1933). Based on the field and petrochemical studies (Gathania et al., 1995) 
divided the Ultramafics into three groups; the first group consisting of coarse grained carbonate-
talc dominated rock occurring near the contact with the metasediments, while the second group 
consists of dark coloured antigorite-chlorite bearing rocks, while monomineralic chlorite rich 
forms the third group. The latter occurs as intrusive bodies within other ultramafic groups and 
metasediments. The above mentioned facts regarding the geologic setting of Udaipur study area 
have been referred from “Geology of Rajasthan” by S. Sinha-Roy, G. Malhotra and M. Mohanty, 
Geological Society of India, Bangalore, 1988. 

3. Data Used & Methodology 

The following data was used for the study 
          1) Hyperion Level 1R and Level 1Gst images 
          2) Geological Map of the Study Area (Figure-2) 
          3) Spectral Library (USGS) 
Hyperion data onboard EO-1 satellite acquired on 19.01.2004 is used for this study. The product is 
distributed by USGS, and the Hyperion Level 1R data, which is only radiometrically corrected is used 
for the current study.Hyperion collects 242 unique spectral channels ranging from 0.357 to 2.576 
micrometers with a 10-11 nm bandwidth.Level 1Gst dataset is radiometrically and geometrically 
corrected data. It is also terrain corrected. This dataset is having same details as level1R data. It 
was used for geometric correction of L1R data. The overall methodology which was adopted for 
this study was illustrated in the Figure 3.                  



     
                                                             

                                           

                                         Figure 3 

 

The Flow Diagram  of Methodology 

4. Data Pre-Processing 

   Hyperspectral data poses challenges to image interpretation,because of high data 
volume,redundancy in information,need for calibration,and dimensionality problem. The raw 
Hyperion image is having certain errors arising due to atmosphere or malfunctioning of sensor 
mechanism. The errors are said to be caused due to calibration differences in the detector array 
(Goodenough et al., 2003).Some of the bands, particularly in lower and upper ends of the 
spectral range exhibit poor signal to noise ratio. As a result, during level 1 processing, only 198 
bands are calibrated. The apparent strips are frequently found in several bands. To reduce the 
errors caused by the stripping effect, all spectral bands are screened and manually rejected a total 
of 54 bands with apparent stripping effects from VNIR + SWIR spectral range. A spatial subset 
was taken to focus on the study area.  

4.1 Correction for Bad Columns 

    The raw image has some dark and bright columns occurring due to change in the calibration or 
failure of some detectors in the CCD array at the time of capturing the image. The scan line 
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dropout or stripping errors should be removed before atmospheric corrections. The bad columns 
were replaced by taking average of the previous and next column.  

4.2 Atmospheric Correction using FLAASH Module 

    Solar radiation is affected by its path through the atmospheric absorption and scattered in the 
combined Sun-surface-sensor.The radiance obtained by a sensor is modified by the atmosphere 
as well as by the Earth’s surface.Because of this, spectral imagery includes information about the 
atmosphere and the earth’ surface.Atmospheric correction ( or compensation) of spectral imagery 
refers to the retrieval of surface reflectance spectra from measured radiances.Spectral imagery of 
the Earth’s surface from airborne or space platforms can be used to fullest advantage only when 
the effects of the atmosphere(e.g., from aerosol, water vapour,etc.) have been removed and the 
data are reduced to units of reflectance.In collaboration with the Air Force Research Laboratory 
and other US Government agencies, SSI has developed a state-of-the-art,first-principles 
atmospheric removal (or “correction”) algorithm called FLAASH ( Fast Line-of-sight 
Atmospheric Analysis of Spectral Hypercubes).FLAASH handles data from a variety of HSI and 
MSI sensors,supports off-nadir as well as nadir viewing, and incorporates algorithms for water 
vapour and aerosol retrieval and adjacency effect correction(Matthew et al.,2000). 

    FLAASH requires the input radiance image containing calibrated radiance data in a 
floatingpoint,long integer (4-byte signed), or integer (2-byte signed or unsigned) data type 
having units W/cm² * nm* steradian. The image should have BIL or BIP format. To convert the 
raw image into radiance units all the VNIR bands should be divided by a scale factor 40 and the 
SWIR bands by 80. For inputting the image in FLAASH those band should be divided by 400.0 
and 800.0 respectively. A text file containing array of 400.0 for first 70 VNIR bands and 800.0 
for the 172 SWIR bands was created and used at the time of inputting the image in FLAASH.  

5. Hyperspectral Analysis 

  The following procedures of hyperspectral analysis were employed, including the Minimum 
Noise Fraction (MNF) transformation for reducing spectral data, the Pixel Purity Index (PPI) for 
identifying those extreme or spectrally pure pixels, and the n-Dimensional Visualizer for de- 
termining the endmember directly from the image. Mixture Tune Matched Filtering and Spectral 
Angle Mapper (SAM) were applied to estimate abundances of each endmember to produce final 
map. 

5.1 Minimum Noise Fraction 

The minimum noise fraction (MNF) transformation determines the inherent dimensionality of 
image data, to segregate noise in the data, and to reduce the computational requirements for 
subsequent processing. This is a two step process. The first step results in transformed data in 
which the noise has unit variance and no band-to-band correlations. The second step is a standard 
Principal Components transformation of the noise-whitened data.  



5.2 Pixel Purity Index (PPI) 

The Pixel Purity Index (PPI) is a means of finding the most “spectrally pure,” or extreme, pixels 
in multispectral and hyperspectral images (Boardman et al., 1995). The most spectrally pure 
pixels typically correspond to mixing endmembers. PPI is computed by repeatedly projecting n-
dimensional (n-D) scatter plots onto a random unit vector. ENVI records the extreme pixels in 
each projection are recorded-those pixels that fall onto the ends of the unit vector and it notes the 
total number of times each pixel is marked as extreme. A PPI image is created where each pixel 
value corresponds to the number of times that pixel was recorded as extreme. The PPI is 
typically run on an MNF transform result; excluding the noise bands. PPI was calculated with 
10000 iterations and a threshold factor in the data unit was set to 2.5 for extreme pixel selection. 
The results of the PPI are used as input into n-D Visualizer.  

5.3. The n-Dimensional Visualizer 

To further refine the selection of the most spectrally pure end members from the derived two 
dimensional PPI image and more importantly, to label them with specific end member types (i.e., 
to assign these end members to spe- cific mineral types), it is essential to re-examine visually the 
selected pixels in the n-dimensional feature space and to assign them manually to appropriate 
types(Boardman and Kruse,1994).The selected classes were exported to Region of Interest(ROI) 
and used as input for further spectral processing.  

5.4. Spectral Angle Mapping 

Spectral angle mapper (SAM) is a procedure that determines the similarity between a pixel and 
each of the reference spectra based on the calculation of the “spectral angle” between 
them(Boardman and Kruse,1994). This method treats both (the questioned and known) spectra as 
vectors and calculates the spectral angle between them (Figure 4). It works on images with 
apparent reflectance and determines the similarity between two spectra by calculating the “spec- 
tral angle” between them, treating them as vectors in a space with dimensionality equal to the 
number of bands. A smaller angle means a closer match between the two spectra and the pixel is 
identified as the fixed class. SAM determines the similarity of an unknown spectrum t to a 
reference spectrum r, by applying the following equation. 

                           

   



                               

 

                                    Figure 4 showing the SAM algorithm 

5.5 Mixture Tuned Matched Filtering 

Matched Filtering removes the requirement of knowing all of the endmembers by maximizing 
the response of a known endmember and suppressing the response of the composite unknown 
background, thus matching the known signature (Chen and Reed, 1987; Stocker et al., 1990; Yu 
et al., 1993; Harsanyi and Chang, 1994). It provides a rapid means of detecting specific minerals 
based on matches to specific library or image endmember spectra. This technique produces 
images similar to the unmixing, but with significantly less computation and without the 
requirement to know all the endmembers. Mixture-Tuned Matched Filtering (MTMF) is a hybrid 
method based on the combination of well-known signal processing methodologies and linear 
mixture theory (Boardman, 1998). This method combines the strength of the Matched Filter 
method (no requirement to know all the endmembers) with physical constraints imposed by 
mixing theory (the signature at any given pixel is a linear combination of the individual 
components contained in that pixel). MTMF uses linear spectral mixing theory to constrain the 
result to feasible mixtures and to reduce false alarm rates (Boardman, 1998).  

6. Results & Discussion  

The forward MNF transformation was performed on 144 bands of preprocessed image to reduce 
the dimensionality of the data. The first eight eigenbands were selected containing most of the 
spectral information. Therefore, they were used to determine the pure pixels in the Hyperion 
image using PPI procedure. PPI was calculated with 10000 iterations and a threshold factor of 
2.5 for extreme pixel selection. From the PPI image, the purest pixels were selected by giving a 
threshold of 200. A total of 460 pixels were shortlisted and converted to Region of Interest. 
These pixels were used for further processing. The spectra of pure pixels were plot into an n-
dimensional scatter plot to determine the endmembers. The resampled USGS mineral library is 
used through spectral analyst to identify the material of the endmembers extracted from N-D 
Visualizer. The Spectral Angle Mapper and Spectral Feature Fitting techniques were used for the 
identification. Equal weightage was given to both the techniques and the mineral with maximum 
score for matching was identified as the material for that endmember. The pixel clusters for each 
material were refined and finalized by checking spectral profiles of each and every pixel in the 
cluster.Finally four minerals were identified through the process and they are Grossularite, 
Pyrite, Calcite and Andradite. The spectral profiles of the endmember minerals were used for 
abundance mapping are shown in the following figure-5.    



                             

  

Figure-5 Spectral profiles of Endmembers  

Mixture Tune Matched Filtering and Spectral Angle Mapper (SAM) were applied to estimate 
abundances of each endmember to produce final map. Mixture Tune Matched Filtering gave 
good results in mapping the endmembers while SAM has given intermixing of endmembers in 
study area.The mineral abundance map of each endmembers is shown in the figure-6         

                         



  

                

  

                              

  

Figure-6 Mineral abundance maps for Grossularite,Calcite,Pyrite,Andradite  



To locate the best places for each mineral, a combined map was prepared using rule classifier 
wherein threshold values of each end members was used.The final mineralogical map created 
from the abundance maps using Rule Classifier is shown in the figure-7.  

                                   

   

Topography,vegetation along with the use of reference spectra from the standard spectral 
libraries which differ to a large extent from the spectra of actual minerals in the field conditions, 
has led to some amount of misclassification. Hence the output mineral map shows many ‘false 
positives’ along with the correct results.          



7. Conclusion 

The study illustrates that Hyperion data is useful for identifying mineral abundances and 
mapping the geological characteristics.Minerals identified are in accordance with the ground 
lithology, but the spatial distribution of those minerals in the map is affected by topographic 
disturbances and presence of vegetation.  In conclusion, it can be said that the low signal to noise 
ratio of Hyperion and presence of smile effect in the image and the use of laboratory spectra of 
these minerals from the standard spectral libraries as the reference affected the classification 
results and their accuracies.  
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